Hal yang membedakan adalah himpunan penyelesaian pada persamaan trigonometri berupa besaran sudut. Jenis Persamaan Trigonometri Saat belajar trigonometri, kamu sudah dikenalkan dengan istilah sinus, cosinus, dan tangen, kan? Oleh karena itu, persamaan trigonometri juga memuat ketiga komponen tersebut. 1. Persamaan sinus
Tentukan himpunan penyelesaian dari persamaan trigonometri berikut: $\sin 3x=0$ untuk $0^\circ < x < 360^\circ$. $2\cos (2x-60^\circ )-\sqrt{3}=0$ untuk $0\le x\le 2\pi$.
Tentukan himpunan penyelesaian dari persamaan trigonometri sin x = sin 2/10 π, 0 ≤ x ≤ 2π ….. PEMBAHASAN. x1= 2/10 π + k . 2π. untuk k = 0 maka x1 = 2/10 π (masuk syarat 0 ≤ x ≤ 2π) untuk k = 1 maka x1 = 22/10 π (tidak masuk syarat 0 ≤ x ≤ 2π) x2 = (π - 2/10 π) + k . 2π. x2 = 8/10 π + k . 2π
Tentukan himpunan penyelesaian dari persamaan-persamaan trigonometri berikut! a. sin 3x = 21, 0 ≤ x ≤ 2π Iklan HE H. Eka Master Teacher Mahasiswa/Alumni Universitas Pendidikan Indonesia Jawaban terverifikasi Pembahasan Jawaban yang benar untuk pertanyaan tersebut adalah {181 π, 185 π, 1813π, 1817π, 1825π, 1829π} Jika sin x = sin α, maka:
Berikut penyelesaian persamaan trigonometrinya : ♣ Persamaan Sinus : sinf(x) = sinθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = (180 ∘ − θ) + k. 2π. ♣ Persamaan Cosinus : cosf(x) = cosθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = − θ + k. 2π. ♣ Persamaan Tan : tanf(x) = tanθ memiliki penyelesaian :
w6MlYDi.
tentukan himpunan penyelesaian dari persamaan trigonometri